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Abstract

Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order

sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its
geometrical parameters. Considered is the four-parameter kinematic model, as well as the five-parameter model in case
of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames.
Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown
that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.

1. Introduction

Sensitivity Theory plays an important role in Systems Theory and in Control Engineering. Its major part, Sensitivity
Analysis, is studying the effects of small variations of system parameters on its dynamic behavior and performance
criteria. This information can be used for identification of the system's mathematical model, and for the optimal

design of the system's controller. Sensitivity theory is also concerned with methods of efficient generation of
sensitivity functions in real-time, which can be used for adaptive control. The main results of Sensitivity theory with

application in control were obtained in the early sixties. An excellent survey of the Sensitivity Theory at that time is
given by two of its important contributors, Kokotovic and Rutman [9]. More recent overviews of the Sensitivity
Theory are given by Cruz [3] and Frank [5].

Bearing in mind the substantial influence of the Sensitivity Theory on the development of Control Theory, the

question can naturally be raised, whether it can play a similar role in Robotics. In fact, there are many areas in
Robotics where sensitivity functions are implicitly used. An example is Robot Calibration, which has been
established as an important discipline of Robotics [12], and which can be considered as a counterpart of System
Identification, a discipline of System Theory. Finally, one of the most important quantities in Robotics, the
manipulator Jacobian matrix, is a sensitivity matrix of the robot position and orientation with respect to joint angles.

The terms "sensitivity", or "kinematic sensitivity" is explicitly used in Robotics by Togai [13]. He has

proposed the kinematic sensitivity matrix as a new quantitative measure fox the capability for accurate positioning and
orienting of a manipulator. This measure is proposed as an attribute complementing Yoshikawa's robot

manipulability [15]. Asada and Hara [1] have also defined and analyzed the sensitivity of the actuator torque of the
direct-drive arm with respect to the inertial loads. Both papers are dealing with sensitivity only partially, in the
context of other problems, and without particular attention given to the problem of computing sensitivity functions

in the general case.
This paper considers sensitivity vectors and matrices more generally, although restricted to Robot Kinematics.

Sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its
geometric parameters: link twists, link distances, link offsets and joint angles. Their explicit expressions are derived
in terms of link coordinate axes. The case of nominally parallel joint axes, i.e. the five parameter model proposed by

Hayati [6-8], is also considered. The sensitivities with respect to link twists about y-axes are derived for this case.
Sensitivity vectors, or more precisely, the first-order sensitivity vectors, are then used to derive second-order
sensitivity vectors, which are second-order partial derivatives of the manipulator position and orientation with respect
to link parameters. It is shown that second-order sensitivity vectors can be entirely expressed in terms of first-order
sensitivity vectors. The appendix supplied at the end of the paper reviews the basic formulas from robot kinematics
which are used in the derivation of kinematic sensitivities. It also presents an efficient recursive algorithm for

computation of link coordinate axes, for both the four and the five parameter models of forward kinematics.

319



2. Sensitivity vectors and matrices

Position and orientation of an n-DOF manipulator are characterized by its position vector p ffi [ p: p_ p_ ]T and

orientation matrix R ffi [r/j]3. These quantities can be referred to any link with respect to any coordinate system. We

will consider position and orientation of the n-th link, called the wrist, with the 0-th link, called the base, as a

reference coordinate system, i.e. p ffiOp, and R = °R.

The manipulator geometry is defined by its link parameters. We will use the modified four-parameter Denavit-

Hartenberg model as proposed by Craig[2], in which the link parameters ate: ai (link distances), or/(link twists), di

(link offsets) and 0 i (joint angles). Therefore vector p and matrix R are functions of these parameters:

p = p(a,a,d,0), R = R(a,cqd,0) (1)

where: a = [a 0 at ... a_.l ]r, _ = [_X0 CXt ... ¢X,_l ]r, d = [d I d_ ... d, ]r and 0= [01 02 ... 0,] T.

In order to study variations of p and R caused by small variations of link parameters we have to consider their

partial derivatives _p/3c and _R/_c, where c stands for any of the link parameters. The first partial derivative, _p/_c,
we call the positional sensitivity vector.

The orientation sensitivity is not so straightforward. The derivative _R/3c does not give convenient
information about the variation of the manipulator's orientation. It would be more appropriate to express it in terms
of three angles instead of a nine-element orientation matrix. Therefore we represent a small change of the

manipulator's orientation through three infinitesimal orthogonal rotations A9 = [Aq_l Aq_ AcP3] r about the axes of
the base coordinate system. This can be wriuen:

R(c+Ac) ffi _(Ag) R(c), (2)
where

• (Aq_) =rog(e3,Aq_3)ro_e2,Aq_z ) tog(el,A%). (3)

The definition of the rot operator is given in the Appendix (see (A-4)). For sufficiently small Aq_i, (3) becomes [11]:

o(a_) ,_ I + A(aq,) (4)

where I is the 3x 3 identity matrix and A(Aq_) is a skew-symme_c operator (see (A-5)). Thus

aR R(c+Ac)- R(c) _•_- ffi lim ffi lim R(c) ffiA( ) R(c),
Ac-o0 Ac Ac-,0

where

(5)

we denote as the orientation sensitivity vector. The relation between the orientation sensitivity vector and the partial
derivative of the orientation matrix is given by:

A(_-)ffi-_R T. (6)

Sensitivity vectors for various link parameters can be joined together to form the sensitivity matrices:

SPa= -- ... ,
380 " tJ_n-I ' a ..... , SP = _Ot_1 a "'" o_t,,.l

(7)
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3. Derivation of sensitivity vectors

Positional sensitivity vectors with respect to parameters aj and dj can be directly obtained if we express the

manipulator position p explicitly in terms of these parameters. Such an expression is given in the Appendix. Since
coordinate axes are independent of these parameters, (A-8) is giving:

3p 0.p.. = zj. (8)

He13c_

In order to derive positional sensitivity vectors with respect to aj and 0j, we first fred partial derivatives of coordinate

axes with respect to these parameters. Combining (A-3) and (A-7) we can write:

_---_-i_R =A(e:) i-1 D i.1R i-1
b3q.l i R , _" i = iR A(e3). (10)

Now applying (10) and (A-6) to (A-8) and assumingj<i, we obtain:

Thus'.

ffxi a R /,l " i -" el A(el) J/R el _A( o o
8oj _j ffij R j Rel) i R e_ ffi A(xj) x i = xj x x i .

_q ffi_ -x i X xj j<i (11)

[ 0 j_i

In a similar way we can obtain other partial derivatives:

_z i _ -z ix xj j<i

"_ 0 j_.il _x....j_={-xixzj j_i Ozi {-zixzj j<i (12)_oj o y>i ' _ = o y_<i

Applying now (11) and (12) to (A-8) we get:

Finally, substituting (A-9) into (13) gives us:

Similarly we get:

thus:

) × xj . (13)

I sPa= Ixo× r o x_xrj...x
Xrn.l] SPo=[ZlXrlz2x r2 ... zn.lXrn_i O ]

(14)

(15)

I (16)n-I

In order to get orientation sensitivity vectors we f'wst differentiate R with respect to otj and 0j :
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a__R.R= a_ (o e j.j÷j )
o

= j R A(e_)

Substituting (17) into (6) gives us:

which _el_:

In a similar way we obtain:

_q_
m =Xj.

D =Zj.

Since R does not depend on aj and dj it follows that:

The result we can summarize as:

- ^( el)°3 = A(xy)R. (17)

(18)

S_ =[00...0]
a

S q_ = [Xo xl ...x,11
a

S _d = [00 ... 0]

S _o = [z_z2 ...z,]
(19)

S_o= _'d. We alsonoticethatsensitivitymatricesBy comparing(19)with(9)we noticeS= = SPa and

¢
Ss constitutethemanipulatorJacobianJo intheformwhichisoriginallygivenby Whitney[14].

4. Parallel joint axes

As pointedout by Hayati [6-8], if two consecutive joint axes are nominallyparallel, small axis missalignment can
cause large variations in link parameters. This invalidates standard calibration algorithms based on Denavit-

Hartenberg's four-parameter model for forward kinematics. Thereforehe has lxoposed a frithparameter, ]3, which is an
additional rotation of the link about its y-axis.

In order to study sensitivities respect to the new parameter, we assume the general case in which all links axe
described by five parameters. In this case, exlxessions (A-3) expand to (A-11), which gives:

_'_"i'7.R = rot(el,ai_l) A(e2)rot(e2,fJi_l) rot(e$0i)=

= A(rot(el,o_.l) e2) i-1 i Ri R = A(cos(cti.l) e2 + sin(a/_/) e3) i-:

Consequently:

bxi_ _ /_3j_J"_'(OR_1=-j nJ÷liRej ) = _R A(cos(aj)e2+ sin(o_j)e3)JiRe_=

= A(cos(a1) yj + sin(aj ) zj )xi. (20)
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Comparing (20) with (A-12) we see that the argument of the A-operator is vj. Hence:

Similarly we get:

_q ffiI "xi × vj j<i

[ o j_i

_f -Z i× Vj j<i

These partial derivatives we use to obtain the positional sensitivity vector with respect to _j:

'_P = vjxpj,

Using the method shown in the preceding section,

By:

pj=rj-ajxj ffi rj+1

Since

(A-12)). This finally gives:

we also fred the orientation

+ dj÷1Zj+l.

sensitivity vector with respect to

the five-parameter model is used with nominally parallel joints, that is cryffi0, vj will be identical to yj (see

I sP_=tYoxpoYsXp,...yn.jXpn.:] S_ffitY0 Yl -.- Y"']l

5. Second-order sensitivity vectors

The second-order sensitivity vectors we define as partial derivatives of the first order sensitivity vectors obtained in

third section. From (8) or (9) it is clear that:

_a i 3aj i_ai % _ Oat 3d i _dj

In addition, from (14) and (15) we get:

ffi{xlX xj i<j , _2 9 =lxix zj i<j
_oq Oa j 0 i 2 j _i _d j ( 0 i 2 j

__{z_xxj i__j , _2p __{z_x zj i<j
_Oi_aj 0 i>j _i_dj 0 i>_j

In order to obtain the other second-order sensitivities, we find f'wst the derivatives of r i. Starting from (A-9), and

knowing that x_ and z i are independent from the link distances and link offsets, we can directly write:

"_i = xi i2j ' "_i = zi i > j
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For the link twists we have:

Applying (11) and (12), and assuming i <j, (21) becomes:

= _ [(xixx_l)aka+(x_xzDd_ =xix _ (x_ a,.l+ = - FiX Xi,

For i = j we write (see (A-9)):

xjai+ zj_j d_ + rj,1)

_xj azj+ I Or>+1

m _j m

Applying (11), (12) and (22), we get:

-- - ( zj.1 dj+1 + r_l ) x xj.

Since xj x xj = 0 we have:

=-(Zld>+ 1+ xjaj +rj+l)xxj = -rjxxj, i=j.

Combining (22) and (23) we t'mally obtain:

Orj {'rjxxi iSj_i -r i x x i i > j

Similarly we obtain:

Using now (16) we get:

_j l-rjxzi i __ j

_0i [-rix zi i > j

Assuming i <j and applying (11) and (24), (25) becomes:

021) ='(xjxx_)xD'x_x(r_xxi)-

O_ i 0_

Since (a x b) x c = a x (b x c) - b x (a x c) for any three vectors a, b and c (see (A-6)), (26) becomes:

_2p = Xi × (Xj × rj),

For i __ (25) yields:

_21) = Xj × (Xi ×ri).
&zi _c_j

(21)

(23)

(22)

(26)

(24)

(25)
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Thus"

f xlx(xjxrj) i<j-(xi x r i ) x xj i_j

Similarly we can obtain other second-_der derivatives:

Izix (xjxrj) i<j

_2p.ao, ac_j [-(z/xr/)xx_ i_j

x (zjxr/) i<j

--_ffi_oiaoj [-(zixri) xzj i_j

Derivatives with reversed order of differentiation can be obtained using Schwal-z's theorem for mixed derivatives. For

example:

i¢j _Oj acz i j>i

- -(zjxr;)xxi ffi xi x (zjx rj)

The results for second-order positional sensitivity vectors are summarized in Table 1. The second-order orientation
sensitivity vectors can be obtained by differentiating corresponding first order sensitivity vectors, which are given in
(19). The results are summarized in Table 2.

It is interesting to note that second order sensitivity vectors can be expressed in terms of rust-order sensitivity vectors.
Comparing the results from the tables we can, for example, write:

f "(_"X a-R" i < jal_i aoj - . apx a.__., i_>j

This observation can be sumarized as follows:

f a_.. x ap i<j0 i < j a_i _qj
.___.R_= aP x _--_"i2j , a2P =

ig, j

where c can be symbolically replaced by a or d, while _ and TIcan be replaced by c_or O.

a(p a(p

_x _ i<j

0 i__j
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Table 1. SECOND-ORDER POSITIONAL SENSITIVITY VECTORS

N

0

0i

0

-x i xxj

0

-xixzj

-slxzj -zixzj

ZlX(Zjx_)

"(z i xri)xz j

(Upi_ val_ ia for i < j, iowm val_ is for i > j)

Table 2. SECOND-ORDER ORIENTATION SENSITIVITY VECTORS

cti

oi

d_

zix,j

o

(Upper value is fori < j, lower value is for i 2j')

oj

xixzj

o

zixzi

o

6. Conclusion

Kinematic sensitivity vectors and matrices with respect to link parameters have been defined and derived for open-
loop, n DOF manipulators. Sensitivity vectors are expressed in terms of coordinate axes of manipulator links. A
recursive algorithm for efficient computation of coordinate axes has been also presented. Second-order sensitivity
vectors are also derived. It is shown that the second-order sensitivity vectors can be expressed as vector products of the
first-order sensitivity vectors. The results obtained can be used for numeric and symbolic computation of kinematic
sensitivities for a particular manipulator type.
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Appendix

The orientation R and position p of an n-DOF manipulator are given by:
n n

R--°R ': o o ,,= H • R , P = P n = _ i'lR Pi'
/-1 /-1

where i-_R and i-1 Pl are the relative orientation maffix and position vector of the i-th link, and

(A-I)

iR o.! R i-Io = iR . (A-2)

If we suppose the four-parameter model originally proposed by Denavit and Hartenberg [4] and modified by Craig [2],
then:

i-I i -1
i R = rog(el,ai.l) rog(e3,0i), Pl = el ai.l + rog(et.ai-l) e3 di, (A-3)

where el=[100] r, e2=[010] r and e3=[001] r.
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The rotation operator used in (A-3) can be expressed in general form as rotation by angle _ about unit vector k = [k_
!,2kj 7, Ikl= ]:

rot(k,Cp) = I + sin_ A(k) + (1-cos_) A(k) 2, (A-4)

where I is the 3x3 identity matrix and A(k) is the skew-symmetric ope_.

A(k)ffiIks 0 -kl .
L-k2 kl 0

Note that operator A has the following interesting properties[10]:

(A-5)

A(I) T = -A(a) A(a+b) = A(a) + A(b) A0k)2 = kkT - I

A(a)b = a × b A(a) A(b) - A(b) A(a) - A(A(a)b) A(k) 3 = - A(k), (A-6)
A(ca) = cA(a) BA(a) ffiA(Ba)B

where a and b are arbitraryvectors, k-is a unit vector, c is scalar and B is an orthogonal 3x3 matrix.
Using these pmpe_es, it can be shown:

_-_rot.(k,t) A(k) : A(k) rot(k,,). (A-7)rot,(k,_b)

If we denote the coordinate axes of the i-th link by: x/ o o o o" xi' Yiffi Yiand zi- zi, i.e i R ffi[_ Yi zi],

x i ffi °R e j, Yi o" i R e2, _ - °R e3, then we can exlxess p in terms of these vectors:

?1

p = Z xi.l _-l + zi di • (A-S)
/-1

Similarly we can express the distance of the i-th link from the last, n-th, link:

r i = ri+l+xiai+zi÷l_+l ffi _xj.laj.l+gjd j, iffin-l,n-2 .....I, r,ft0, P =ri. (A-9)

I

j..i+l

Note that we have assumed hem coordinate assignments as proposed by Craig [2], whexe the z-axis of the i-th frame,

zi , is colineax with the i-th joint axis, and the origin of the i-th link is lying on the axis.

Vectorsxi, Yi and _ can be computed re.cursively. Using (A-2), (A-3) and (A-4) we can obtain:

vi= cos(ai.1)Y_l+ sin(o_'-1)z_1, Yi ffiCiVi'SiXi.l , (A-10)

x i = Si v i + Cix i-1 , z i ffi COS(0VI)zi.j - sin(ai.l) y _1 , i = I,..,n

In the five-parameter model proposed by Hayati [6-8], relative orientations and positions of links become:

i-IRi = rog(e_,oq.l) rot(e2,[_i./) rot(ez,0i), i-1 Pi = el ai.l + rot(el,oq_l) rot(e2,_i.j) e3 di.

This will result in a similar set of recursive relations for coordinate axes:

(A-If)

vi = sin(cq.:)z/.l + cos(oq.l) y/.l , xi ffi sivi + ciui,

w i = cos(ai.l) z tl - sin(oq.l) y tl , Y i = czv i " siu i, (A-12)

u i = cos(13_.1)x. - sin(pi.l)w_, z i = sin(pi.l)x. + cos(pi./)wi, i= 1,..,n.

Note, for [_i-:= 0, ui = x_l , and (A-12) reduces to (A-10).
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